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We present a new approach to evaluating the intracrystalline
thermodynamic properties of solid solutions by combining the
molecular dynamics (MD) method and a chemical thermodyn-
amic approach. The coordination type of ions in alkali halide
solid solutions (A, B)X is classi5ed into 7 types Xn(n 5 0+6) for
halide ions and into 13 types An(n 5 0+12) and Bn(n 5 0+12) for
cations, depending on the kind and the coordination number of
the nearest cation. Entropy of mixing for a nonideal solid solu-
tion was formulated by using the con5gurational entropy of
coordination types. The equilibrium concentration of coordina-
tion types is expressed by equilibrium reactions among coordina-
tion types. The equilibrium constants in the solid solution of the
system NaCl+KCl were then calculated by the MD method and
the excess free energies of mixing were obtained by calculation.
The asymmetric nature of the solvus curve of the system
NaCl+KCl is well demonstrated and the temperature of the
apex of the solvus agrees well with experimental data. ( 2000
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INTRODUCTION

Thermodynamic modeling of solid solutions, which was
proposed by Guggenheim (1), has been developed by many
authors. Margules-type expansion for the excess thermo-
dynamic properties of the system NaCl}KCl by Thompson
and Waldbaum (2) and the quasi-chemical approximation
by Green (3) of the same system laid the ground for the later
works. Theoretical modeling of multicomponent solid solu-
tions has been achieved by Anderson and Lindsley (4) and
Hel!rich and Wood (5).

In view of the structural and thermodynamic points,
Davies and Navrotsky (6) studied a wide variety of struc-
tural types and showed that deviations from ideal mixing in
a number of isostructural binary solid solutions can be
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parameterized and correlated quantitatively using regular
and subregular thermodynamic mixing models.

Recent advances in the molecular dynamics method
(MD) have made it possible to obtain information about
thermodynamic and physical properties of inorganic com-
pounds "rst hand. Akamatsu et al. (7) applied the MD to the
solid solutions in the system NaCl}KCl. They obtained
a smooth positive asymmetric curve of enthalpy of mixing at
900 K under 0.1 MPa. They used an ideal mixing model for
the cation distribution and the con"guration was main-
tained throughout the calculations. Their report stimulated
this study, which attempts the simulation of a nonideal solid
solution on the atomic scale, to gain insight into the factors
responsible for the thermodynamic properties. We know,
however, that the equilibrium distribution of cations at low
temperatures will never be attained by the MD in such
a short time. Kikuchi (8) indicated that the distribution
pattern of halide ions in a binary NaCl-type solid solution
(A,B)X is described by seven types of anion-centered oc-
tahedra, XA

6~n
B

n
(n"0}6), where n is the number of the

surrounding cation B. The lattice energy is expressed by the
sum &P

n
U

n
where P

n
is the probability of an anion-centered

octahedron and U
n

is the interatomic potential.

FORMULATION

Classixcation of Coordination Types

For ionic compounds, the interatomic potential (;
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expressed in a conventional form (9) as
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where the terms on the right side represent the Coulomb
energy, repulsive potential, and van der Waals attraction,
respectively. The r

ij
is the distance between two ions i and j.

The z
i
, z

j
are the valences, f

0
is an arbitrarily chosen con-

stant to adjust the dimension, a
i
, a

j
are the ionic radii, b

i
,
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b
j
are the hardness parameters, and c

i
, c

j
are the parameters

related to van der Waals attraction.
The halide ion X of (A,B)X in a binary NaCl-type solid

solution is coordinated by six cations, A and/or B. For such
a central anion X

i
, Eq. [1] indicates that the "rst term is

independent of the nature of the surrounding cation, if we
use the nominal valences, but the second term strongly
re#ects the nature of cation A or B. It means that the
interatomic potential U

i
of X

i
depends on the number of the

di!erent coordinated cations. It is therefore useful to classify
the halide ions into seven coordination types according to
the combination of coordinated cations,
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where the symbols in parentheses are the abbreviations of
the coordination type of X. Similarly, the cations in the
structure are distinguished by 13 coordination types. They
are A

0
, A

1
,2,A

12
and B

0
, B

1
,2,B

12
where the subscript is

the number of the other kind of cation. Similar expressions
will be used in this paper.

Mixing Model of an Ideal Solid Solution

The distribution of cations A, B in an ideal solid solution
should be statistically random. The probability of "nding
a halide ion coordination type [X

n
] will give a binominal

distribution against the fractions of two kinds of cation, x
A
,

x
B
,
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where n"0}6, (
6
C

n
) is the combination number, and
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6
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. The relation &[X

n
]"1 is given by substituting

x
B
"1!x

A
into the above equations.

The con"gurational entropy for 1 mol of a coordination
type X

n
can be expressed as

SX
n
"R ln (

6
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n
) [3]

or SX
0
"0, SX
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"R ln 6, SX
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"R ln 15, SX

3
"R ln 20,

SX
4
"R ln 15, SX

5
"R ln 6, and SX

6
"0, where R is the gas

constant. The entropy of mixing for these seven types of
octahedron can be expressed as

S.*9.Xn"!R&[X
n
] ln [X

n
]. [4]

Since the same cation in the structure is present six times
in Eqs. [3] and [4], the overall entropy of mixing per
mole becomes

S.*9"(1/6)R(&[X
n
]SX

n
!&[X

n
] ln [X

n
]). [5]

Substituting [X
n
] and SX

n
into Eq. [5] by Eqs. [2] and [3],

one obtains the well-known equation

S.*9"!R(x
A
ln x
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B
). [6]

Similar relations are found in cation coordination types
A

n
and B

n
. The probability (or concentration) of A

n
and

B
n
being present in the structure becomes
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The con"gurational entropies are
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and the overall entropy of mixing is expressed also by
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Mixing Model of a Nonideal Solid Solution

It may be expected that the concentration of coordination
types X

n
, A

n
and B

n
in nonideal solution deviates from that

in the ideal solution. It may also be expected that the
entropy of mixing of such solid solutions will be smaller
than that of the ideal solid solutions. The following proced-
ure makes it possible to create a mixing model of a nonideal
solid solution.

In the following formulations, X
n
, A

n
, and B

n
are treated

as chemical species since they are chemically di!erent and
energetically discrete. Under equilibrium conditions, the
coordination types X

n
will be equilibrated to each other,
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Applying the mass action law to them, we have
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From the de"nition
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and from the mass balance, it follows that
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where 6x
B

of the right side comes from the coordination
number.

It is thus possible to evaluate all the concentrations from
Eqs. [17]}[23] if the equilibrium constants are known.

The formulations for cations are similar to the above. The
elementary reactions are
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and the possible site change reactions between A and B can
be expressed as
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Applying mass action law to them, we have
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and from the mass balance,
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Because the total number of coordinated B ions to the
central A ions is equal to that of A ions to the central B ions,

&n[A
n
]"&n[B

n
] (n"1}12). [32]

Equations [27] and [28] include 11 individual equations,
respectively. Therefore, 26 equations are described for 26
unknown concentrations.

Evaluation of Equilibrium Constants

The above equilibrium constants are calculated from the
interatomic potential by the form K"exp(!*G/nRT ).
For example, the *G for Equation [12] is written as

*GX
1
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1
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6
), [33]

where UX
0
, UX

1
, and UX

6
are the internal energies, which are

equal to the interatomic potentials obtained by the MD at
a given mole fraction of x

B
. Since the excess volume of

mixing is generally small, contribution of the term P*V can
be neglected.

Excess Free Energy of Mixing

The concentrations of X
n

are calculated by the New-
ton}Raphson method using Eqs. [17]}[23]. The concentra-
tions of A

n
and B

n
were calculated by a Monte Carlo

method using Eqs. [27]}[32]. The excess enthalpy of mixing
is expressed by
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where UA and UB are the internal energies of the end
member A and B, respectively. The excess free energy of
mixing is expressed by
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The above equation is based on the assumption that
all coordination types are distributed at random in the
structure.

APPLICATION TO THE NaCl+KCl SYSTEM

Interatomic Potential of Coordination ¹ype

The structural model for (Na
1~x

K
x
)Cl was prepared and

the average potential for each of the coordination types, X
n
,

A
n
, B

n
were obtained by the MD at 3003C under



TABLE 1
Energy Parameters Used for MD Calculations

Repulsive parameters
Parameter c

E!ective charge a/nm b/nm (kJ/mol)1@2

Na 0.668 0.1259 0.008 0.006
K 0.702 0.1563 0.008 0.024
Cl * 0.1950 0.009 0.173

Note. f
0
"4.184. The e!ective charge of Cl is equal to

!(q
N!

n
N!
#q

K
n
K
)/(n

N!
#n

K
), where q

N!
, q

K
are the e!ective charges of Na

and K and n
N!

, n
K

are the number of Na and K in the basic cell.
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atmospheric pressure. The program of the MD was newly
written in Fortran. The basic cell consists of 256 Cl atoms
and 256 cations, which are randomly distributed. E!ective
charges for metal ions were calculated from the elec-
tronegativity data of Pauling and calculated as
1!expM!1/4(x

M
!x

C-
)2N, where x

M
is the electronegativ-

ity of the metal ion and x
C-

is that of Cl. The e!ective charge
of Cl~ was determined so as to neutralize the entire charge
of the structure. The values c

i
, c

j
were calculated from the

ionization energy and the ionic polarizability (9). The repul-
sive parameters were determined so as to reproduce the
lattice constant of the end members, NaCl and KCl. The
energy parameters used are listed in Table 1. The calcu-
lation was performed with 1 fs of the step time up to 4000
steps.

An example of potential data for (Na
0.5

K
0.5

)Cl is listed in
Table 2. It is shown that the average potential of the Cl ion
decreases linearly with an increasing number of coordinated
TABLE 2
Coordination Types and the Average Interatomic Potentials

of the Solid Solution (Na0.5K0.5)Cl Calculated by MD at 3003C
Under Atmospheric Pressure

Coordination Potential Coordination Potential
type Number (kJ/mol) type Number (kJ/mol)

X
0

1 !320.55 A
8

14 !361.52
X

1
25 !333.35 A

9
9 !358.05

X
2

56 !344.55 B
2

2 !270.60
X

3
93 !355.68 B

3
9 !283.67

X
4

58 !369.84 B
4

13 !294.00
X

5
18 !385.99 B

5
21 !299.36

X
6

5 !398.13 B
6

24 !311.19
A

3
5 !406.91 B

7
25 !321.58

A
4

14 !397.40 B
8

22 !329.31
A

5
18 !390.19 B

9
10 !341.27

A
6

36 !380.53 B
10

1 !348.17
A

7
32 !369.54 B

11
1 !358.12

Note. Symbols for Na, K, and Cl are represented by A, B, and X,
respectively.
K ion, and the average potentials of cations have a linear
relation to the number of the other coordinated cations.
Hereafter, symbols for Na, K, and Cl will be represented
also by A, B, and X, respectively, for convenience. It will be
noted that the extreme coordination types such as A

0
, B

0
,

A
12

, B
12

, etc., are absent in Table 2, indicating that the cell
size was not large enough to represent the exact ratio of
these coordination types. For example, the A

12
type cannot

be generated in the cell at the composition (x
B
"0.1). Many

&&arti"cial'' cells, which contain an extreme coordination
type arti"cially assigned in the cell, were prepared to obtain
the potential for the extreme type. The potential data of the
cell for the composition (x

B
"0.14), including one A

12
type,

are shown in Fig. 1. It is shown that the linear relation
between the potential value of A

n
and n is maintained, even

in these cases.
Since the potential value of a coordination type depends

on the composition, more than 40 sets of structural models
were prepared. The resulting excess internal energies of all
sets are shown in Fig. 2. Attempts to change parameters in
Eq. [1] and to give nominal charges for ions gave almost the
same results, suggesting that the excess energy of mixing is
not sensitive to these parameters.

The dependence on composition of the interatomic po-
tential of X

n
is seen in the high degree of correlation in

least-squares "ts. All the coordination types (n"0}6) have
a correlation coe$cient r'0.98. Similarly, cation coordina-
tion types A

n
, B

n
also give lines with r'0.99. As the

changes in potential by n at a constant composition can be
linear as shown in Fig. 1, the data were regressed linearly on
both composition and n. The changes in *H and *G at
FIG. 1. Change of the average interatomic potential of A
n
and B

n
in the

solid solution at x
B
"0.14 of the system NaCl}KCl. The open circle

represents the potential of A
12

, which was arti"cially assigned in the cell.



FIG. 2. Excess internal energies (*U) obtained by MD at 3003C under
atmospheric pressure as a function of mole fraction x

B
. Plots for x

B
"0.1,

0.2,2, 0.9 are the original basic cell and the others are the &&arti"cial'' cell
mentioned in the text, showing no di!erence in results.

FIG. 4. Calculated solvus curve of the system NaCl}KCl under atmo-
spheric pressure based on *H at 3003C. Dots are the experimental data
collected by Green (1970).
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3003C vs composition are shown in Fig. 3; they were cal-
culated by using these regression lines and by Eqs. [34] and
[35]. It is noted that the potential for the apex of *H
obtained by Eq. [34] is 1.9 kJ lower than that obtained by
MD (cf. Fig. 2). It is also noted that the substitution of [X

n
],

[A
n
], and [B

n
] in Eq. [34] by the ideal concentration, which

is given by Eqs. [2], [7], and [8], gives the same curves as
those of Fig. 3. The result is derived from the assumption
that the interatomic potential at a constant composition is
linearly related to the increasing number of n. It causes the
FIG. 3. Change of *H and *G as a function of composition for
(Na,K)Cl at 3003C under atmospheric pressure.
*U of the reactions, Eqs. [12]}[16], [24], and [25], to
be zero and the *G to become merely a function of
the con"gurational entropy and the temperature. For
this reason, it is estimated from the linear relationship of
n that the cation distribution in solid solution of (Na,K)Cl is
ideal.

The change in *G as a function of temperature and
composition was calculated by using the *H at 3003C and
the *S for the ideal mixing. The calculated solvus curve is
shown in Fig. 4. The asymmetric nature of the solvus curve
is demonstrated and the temperature of the apex agrees well
with the experimental data (3). The sharper feature of the
calculated solvus may be caused by incorrectness of given
parameters for MD or due to the assumption that *H at
temperatures higher than 3003C is the same as that cal-
culated at 3003C.

CONCLUSIONS

We have shown that the solvus curve of a solid solution in
the system NaCl}KCl can be estimated from the lattice
constants of both end members, NaCl and KCl, without
using any further experimental data. The present approach
uses classi"cation of coordination types and the subsequent
formulation to evaluate thermodynamic quantities for
a nonideal solid solution. It can be applied to any kind of
solid solution with di!erent types of structure. Intracrystal-
line chemical equilibrium relations at comparably low
temperatures can be estimated by the combination of the
conventional MD method and the chemical thermodyn-
amic approach.
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